Dual Action of ATP Hydrolysis Couples Lid Closure to Substrate Release into the Group II Chaperonin Chamber

نویسندگان

  • Nicholai R. Douglas
  • Stefanie Reissmann
  • Junjie Zhang
  • Bo Chen
  • Joanita Jakana
  • Ramya Kumar
  • Wah Chiu
  • Judith Frydman
چکیده

Group II chaperonins are ATP-dependent ring-shaped complexes that bind nonnative polypeptides and facilitate protein folding in archaea and eukaryotes. A built-in lid encapsulates substrate proteins within the central chaperonin chamber. Here, we describe the fate of the substrate during the nucleotide cycle of group II chaperonins. The chaperonin substrate-binding sites are exposed, and the lid is open in both the ATP-free and ATP-bound prehydrolysis states. ATP hydrolysis has a dual function in the folding cycle, triggering both lid closure and substrate release into the central chamber. Notably, substrate release can occur in the absence of a lid, and lid closure can occur without substrate release. However, productive folding requires both events, so that the polypeptide is released into the confined space of the closed chamber where it folds. Our results show that ATP hydrolysis coordinates the structural and functional determinants that trigger productive folding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATP Dependent Rotational Motion of Group II Chaperonin Observed by X-ray Single Molecule Tracking

Group II chaperonins play important roles in protein homeostasis in the eukaryotic cytosol and in Archaea. These proteins assist in the folding of nascent polypeptides and also refold unfolded proteins in an ATP-dependent manner. Chaperonin-mediated protein folding is dependent on the closure and opening of a built-in lid, which is controlled by the ATP hydrolysis cycle. Recent structural studi...

متن کامل

Closing the Folding Chamber of the Eukaryotic Chaperonin Requires the Transition State of ATP Hydrolysis

Chaperonins use ATPase cycling to promote conformational changes leading to protein folding. The prokaryotic chaperonin GroEL requires a cofactor, GroES, which serves as a "lid" enclosing substrates in the central cavity and confers an asymmetry on GroEL required for cooperative transitions driving the reaction. The eukaryotic chaperonin TRiC/CCT does not have such a cofactor but appears to hav...

متن کامل

Conformational rearrangements of an archaeal chaperonin upon ATPase cycling

Chaperonins are double-ring protein assemblies with a central cavity that provides a sequestered environment for in vivo protein folding. Their reaction cycle is thought to consist of a nucleotide-regulated alternation between an open substrate-acceptor state and a closed folding-active state. The cavity of ATP-charged group I chaperonins, typified by Escherichia coli GroEL [1], is sealed off b...

متن کامل

Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle

The eukaryotic group II chaperonin TRiC/CCT is a 16-subunit complex with eight distinct but similar subunits arranged in two stacked rings. Substrate folding inside the central chamber is triggered by ATP hydrolysis. We present five cryo-EM structures of TRiC in apo and nucleotide-induced states without imposing symmetry during the 3D reconstruction. These structures reveal the intra- and inter...

متن کامل

Crystal structure of group II chaperonin in the open state.

Thermosomes are group II chaperonins responsible for protein refolding in an ATP-dependent manner. Little is known regarding the conformational changes of thermosomes during their functional cycle due to a lack of high-resolution structure in the open state. Here, we report the first complete crystal structure of thermosome (rATcpnβ) in the open state from Acidianus tengchongensis. There is a ∼...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2011